Levels of α7 integrin and laminin-α2 are increased following prednisone treatment in the mdx mouse and GRMD dog models of Duchenne muscular dystrophy

نویسندگان

  • Ryan D. Wuebbles
  • Apurva Sarathy
  • Joe N. Kornegay
  • Dean J. Burkin
چکیده

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease for which there is no cure and limited treatment options. Prednisone is currently the first line treatment option for DMD and studies have demonstrated that it improves muscle strength. Although prednisone has been used for the treatment of DMD for decades, the mechanism of action of this drug remains unclear. Recent studies have shown that the α7β1 integrin is a major modifier of disease progression in mouse models of DMD and is therefore a target for drug-based therapies. In this study we examined whether prednisone increased α7β1 integrin levels in mdx mouse and GRMD dog models and myogenic cells from humans with DMD. Our results show that prednisone promotes an increase in α7 integrin protein in cultured myogenic cells and in the muscle of mdx and GRMD animal models of DMD. The prednisone-mediated increase in α7 integrin was associated with increased laminin-α2 in prednisone-treated dystrophin-deficient muscle. Together, our results suggest that prednisone acts in part through increased merosin in the muscle basal lamina and through sarcolemmal stabilization of α7β1 integrin in dystrophin-deficient muscle. These results indicate that therapies that target an increase in muscle α7β1 integrin, its signaling pathways and/or laminin could be therapeutic in DMD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β1D chain increases α7β1 integrin and laminin and protects against sarcolemmal damage in mdx mice.

The dystrophin-glycoprotein complex connects myofibers with extracellular matrix laminin. In Duchenne muscular dystrophy, this linkage system is absent and the integrity of muscle fibers is compromised. One potential therapy for addressing muscular dystrophy is to augment the amount of α7β1 integrin, the major laminin-binding integrin in skeletal muscle. Whereas transgenic over-expression of α7...

متن کامل

Altered expression of the α7β1 integrin in human and murine muscular dystrophies

The α7β1 integrin is the primary laminin receptor on skeletal myoblasts and adult myofibers. It has distinct functions during muscle development and contributes to muscle structural integrity. We have studied this integrin in cases where expression of dystrophin or laminin are compromised. Immunofluorescence demonstrates an increase in α7β1 in patients with Duchenne muscular dystrophy and in md...

متن کامل

Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin.

Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin-glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss...

متن کامل

SU9516 Increases α7β1 Integrin and Ameliorates Disease Progression in the mdx Mouse Model of Duchenne Muscular Dystrophy.

Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity....

متن کامل

Transgenic overexpression of the α7 integrin reduces muscle pathology and improves viability in the dy(W) mouse model of merosin-deficient congenital muscular dystrophy type 1A.

Merosin-deficient congenital muscular dystrophy 1A (MDC1A) is a devastating neuromuscular disease that results in children being confined to a wheelchair, requiring ventilator assistance to breathe and premature death. MDC1A is caused by mutations in the LAMA2 gene, which results in the partial or complete loss of laminin-211 and laminin-221, the major laminin isoforms found in the basal lamina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013